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How to integrate over central charges 

A Restuccia and J G Taylor 
Department of Mathematics, King’s College, Strand, London, WC2R 2LS, UK 

Received 4 May 1983, in final form 1 July 1983 

Abstract. We construct dimensionless actions for fields which have non-trivial central 
charge behaviour. By means of optimisation methods for systems with constraints, we 
show how such actions must be defined in order to give the correct four-dimensional 
equations of motion. This is considered initially for a single real scalar free field with one 
central charge, and extended to successively more complicated situations. In particular 
we discuss fields with more than one central charge with suitable constraint conditions. 
We also consider actions for superfields with central charges and obtain full superspace 
actions for the degenerate cases. Fields without central charges are also described by 
integration over central charge dimensions. We conclude that our four-dimensional world 
may be embedded as the boundary of a higher-dimensional manifold whose extra 
dimensions are not directly accessible on-shell. 

1. Introduction 

The recent proofs (Mandelstam 1982, Brink et a1 1982, Howe et a1 1983) of the 
finiteness of N = 4 super Yang-Mills theory ( N  = 4 S Y M )  and of companion broken 
theories (Taylor 1983b, Rajpoot et a1 1982, Namazie et a1 1982, Parkes and West 
1983) indicate the power of supersymmetry ( S U S Y )  to ameliorate ultraviolet divergen- 
ces of renormalisable quantum field theories. The hope that extended supersymmetric 
theories of gravitation, that is, extended supergravities (N- SGRS) ,  would also be finite 
to all orders has yet to be realised. This is in spite of the progress in construction of 
these theories in terms of their physical fields (Cremmer 1982). 

The essential ingredient for the analysis of ultraviolet divergences in a supersym- 
metric theory is well known to be a superfield version of the theory. The construction 
of such a version is equivalent to the discovery of the auxiliary fields of the theory, 
where these fields are such as to allow closure of the supersymmetry algebra but yet 
may be eliminated algebraically by their equations of motion. Whereas various sets 
of auxiliary fields have been discovered for N = 1 and 2 S G R  (Stelle and West 1978, 
Ferrara and von Nieuwenhuizen 1978, Fradkin and Vasiliev 1979, de Wit and van 
Holten 1979) there has been little progress in achieving similar success for N 3 3. 

The existence of a barrier to the construction of auxiliary fields for N = 3 and 
~ S G R  was shown recently (Rivelles and Taylor 1981, Taylor 1982b) as well as for 
N = 4 SYM (Rocek and Siegel 1981). This has now (Rivelles and Taylor 1983) been 
extended both to all N a 3  in four dimensions, as well as to N-SGR and N-SYM for 
various N in higher dimensions. The resulting no-go theorems indicate that in general 
auxiliary fields cannot be constructed for all interesting cases. Thus in particular the 
tentative conclusions (Grisaru and Siegel 1982) on the possible divergence of N-SGR 
assuming a full extended superfield version of these theories appears very difficult to 
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4098 A Restuccia and J G Taylor 

substantiate. At the same time the no-go theorems seem to indicate the impossibility 
of constructing any version of N-SGR or 4 - s ~ ~  in terms of fully extended superfields. 

There are three methods (Taylor 1983a) which seem able to bypass the N = 3 
barrier, all depending on the reduction of the number of spinor generators in the 
N-SUSY algebra by a factor of 2. The first of these uses only N/2 superfields and one 
imposes the full N-supersymmetry afterwards on S-matrix elements. Such a method 
was used for 4 - s ~ ~  in Howe et a1 (1983) to give a fully Lorentz-covariant proof of 
the finiteness of 4-SYM. It should also allow N = 8 SGR to be constructed in terms of 
N = 4 superfields (Bufton and Taylor 1983b), though this could only lead to finiteness 
up to three loops (Grisaru and Siege1 1982). 

A second method uses the light-cone gauge, in which the N-supersymmetry algebra 
reduces to the N-SUSY light-cone subalgebra for which the auxiliary field problem 
disappears. This is because all spinors are reduced in dimension by a factor of 2, 
corresponding to elimination of the non-propagating modes of a Dirac spinor in terms 
of the propagating ones. Such an approach was used by Mandelstam (1982), Brink 
er a1 (1982), Taylor (1983b), Rajpoot et a1 (1982) and Namazie et a1 (1982). It has also 
been applied to N-SGR for all N s 8  (Taylor 1982a) to allow the construction of 
superfield versions of these theories (to within a controllable ambiguity). As for the 
N/2-superfield version of N-SGR, these fully locally light-cone supersymmetric ver- 
sions of N-SGR cannot be proven finite to all orders of perturbation theory, so that 
this approach also seems unsatisfactory. 

We are left with the final alternative, which is to modify the N-SUSY algebra, for 
N 2 3, by the addition of central charges, Z”,  Z”* (1 s i, j s N). These are operators 
which commute with all the generators of N-SUSY, but can enter to reduce the 
maximum spin of a susu-multiplet by a factor of 2 if the degeneracy condition 

(1.1) 

is satisfied by all fields of the multiplet (Sohnius 1978, Taylor 1980). This spin-reducing 
property also evades the no-go theorems of Rivelles and Taylor (1981), Taylor (1982b) 
and Rivelles and Taylor (1983) by means of a Dirac condition which has been analysed 
elsewhere (Rands and Taylor 1983a, b) and which may be used in a covariant super- 
space description. If the N-SUSY generators are, in chiral notation, St+,  S u - f  and 
associated covariant derivatives Dt+,  Da-,, with (Si+)* = S , - , ,  (Dt+)* =De-, 

ZIIZ*Jk - -0s; 

[St+, Sb+I+ = 2Ee+~+ZZ’ ,  (1.2) 

[Si+, S o - , ] ,  = -2(BcL,,-s;, (1.3) 

and similar relations for the D’s (which all anticommute with the S’s ) ,  the Dirac 
condition is 

ps:,  + = Z”S, -I. (1.4) 

If (1.4) and its complex conjugate are satisfied on a superfield then (1.1) is satisfied, 
and (1.3) follows from (1.2). Only the set of generators St, are thus needed explicitly, 
the Sa-l  being constructed in terms of them. Spin reduction has thus occurred, but 
moreover there are only half the number of N-SUSY generators, so that the N = 3 
barrier can be avoided (Rivelles and Taylor 1983, Taylor 1983a). 

The possibility of using the algebra (1.2), (1.3) to construct N-SGR has already 
been considered by a number of authors. Field redefinition rules (Rivelles and Taylor 
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1982a) were utilised to construct tentative linearised N-SGRS for N = 4, 6 and 8 
(Taylor 1981). Linearised versions of N = 2 S G R  were constructed with two central 
charges (Rivelles and Taylor 1982b), as well as an earlier version with one central 
charge at the full nonlinear level (de Wit et a1 1980, de Wit 1981). Earlier attempts 
were also made to construct N = 4 SYM (Sohnius et a1 1980) and N = 8 S G R  (CFemmer 
et a1 1980) using multiplets €or the gauge vector field or the’spin-2 field, respectively, 
carrying central charge in contradiction to the N = 2 models in which the N = 2 Weyl 
multiplet has no central charge. 

None of these analyses has allowed the construction of a superfield action. The 
only superfield actions that have been presented have not used a full integration over 
superspace but only the integration of a constrained superfield over a subspace of 8 
and e (Sohnius 1978, Taylor 1980). The difficulty in using the full superspace measure 
for N = S U S Y ,  d4x d2N8 dZN8, is that its length dimension is (4- 2 N ) ,  which becomes 
progressively more negative as N increases. In order to have the N-SGR analogue of 
the N = 1 S G R  action, the full superspace volume (Wess and Zumino 1978) 

K - ~  J d4x d28 d 2 8 E  

where E is the determinant of the achtbein EAM, it is necessary to adjoin to the 
space-time variables x W  (1 s p s 4) further Bose dimensions z I ,  with 1 s I s 2(N - 1). 
Thus for N = 2 ,  2 extra bosonic variables are required (Rogers 1982), whilst for N = 4 
and 8 a further 6 and 14 Bose variables are needed respectively. Thus the naive 
N-SGR extension of ( l S ) ,  when the required extra dimensions are to be included, is 

which might be expected to be valid for N = 1, 2, 4 and 8 if suitable constraints are 
to be imposed on the EAM extending those in the case of N = 1. A similar formula 

I d4x dZ”-”z I dZN8 dZNsTr(FaB)’ (1.7) 

may also be conjectured for N - S Y M .  The same extra variables are also required to 
be able to give a dimensionless form to the action for a scalar superfield a, of dimension 
-1, of form 

Such an action might be hoped for as the appropriate form to describe the N = 2 
hypermultiplet (Sohnius 1978, Taylor 1980) or its N = 4 and 8 analogues (Rands and 
Taylor 1983a, b). The formulae (1.6), (1.7) and (1.8) require very careful analysis 
before they can be expected to be used satisfactorily. In particular, we have to ask 
how we can interpret the extra dimensions and integration over them. They are 
expected to be related to the central charges Zi’, but exactly how is not initially clear. 

A natural explanation of the extra bosonic dimensions z 1 ,  . . . , z Z(N-l)  is that they are 
truly present in nature but only become accessible at suitably high energies such as the 
Planck energies. Such an interpretation is the basis of the Kaluza-Klein (KK) approach, 
which has recently become of renewed interest (Witten 1981, Salam and Strathdee 
1981). 
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This use of extra variables as higher dimensions has led to an elegant construction 
(Cremmer 1982) of N = 8 supergravity in d = 4 (d denotes dimension of space-time) 
by trivial reduction from N = 1 SGR in d = 11. However, if we wish to remain in 
d s 11, as (1.6)-(1.8) would indicate, then the no-go theorems (Rivelles and Taylor 
1983) are not avoided; auxiliary fields and a superfield formulation will not exist. 
Moreover, for N = 8 SGR there are 14 extra Bose dimensions, not 7, so that there is 
a decided mismatch between the known N = 1 SGR in d = 11 and its extension to 
d = 18. Indeed N = 1 SGR in d = 18 would unavoidably have fields of spin higher 
than two amongst its components, so would be expected to be inconsistent. We 
conclude that the KK interpretation is the wrong one for the extra dimensions. A 
similar problem arises in the recent attempt (Rogers 1982) to use the full superspace 
measure (1.6) for N = 2; the equations of motion resulting appear to be in a six- 
dimensional space-time. 

If we are not to regard the new dimensions zl,. . . Z 2 ( N - l )  as ones in which we 
can move freely, we might turn to the opposite extreme and suppose that we can 
never venture off a four-dimensional submanifold X4 embedded in 2 ( N +  
1)-dimensional space-time S2(N+1). The question we must answer is then to explain 
how the integrals (1.6)-(1.8) over the whole of this 2(N + 1)-dimensional space-time 
can only describe dynamics on Z4 and not in the whole of SZ(N+l) .  That is the purpose 
of this paper. Such a question has already been analysed in the case of one extra 
space variable by means of dimensional reduction by Legendre transformation by 
Sohnius el a1 (1980). However, we have to consider at least two extra space variables, 
when such a method fails completely. Instead we will show that a viable interpretation 
of (1.8) may be given in terms of constrained integrals whose equations of motion 
are exactly those of dynamics in R4. The constraints will be shown to be the 
spin-reducing ones (1.1) and (1.4) or their generalisations and the extra dimensions 
are to be interpreted as those associated with central charges. We will leave to later 
papers analysis of the expressions (1 .6), (1.7). 

We proceed in 8 2 to outline briefly how a constrained integral over a given space 
can naturally lead to dynamics on a lower-dimensional submanifold, taking as a 
particular case a single real free scalar field. 

This analysis is extended to the case of a free spinor field. Both cases use the 
constraint (1.1). In 8 3 we extend this analysis to more than one central charge, where 
(1.1) must be refined in order to have finite multiplets. We then analyse the superspace 
versions of these cases in $§ 4 and 5 ,  first for N = 2 and then for N = 4 and 8. We 
give a discussion of our results in 8 6. 

2. Free fields with one extra dimension 

We will start our detailed analysis by considering a single free scalar field A in five 
dimensions, which we denote by ( x w ,  x ’ )  with 1 s p  ~ 4 .  We take x 5  to be space-like, 
and require the spin-reducing constraint (1 . l ) ,  which in this instance becomes 

( U - ~ : ) A ( X , X ~ ) = O .  (2.1) 

Condition (2.1), regarded as a second-order differential equation in the independent 
variable x 5 ,  will have solutions determined by the boundary values 

A ( x , x ~ ) = A o ( x ) ,  W ( X ,  ~3 = A , ( x )  (2.2) 
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where x5  = x: is the boundary of the central charge region. We wish to construct a 
Lagrangian in the full five-dimensional space of ( x f i ,  xs) for the field A(x, x5) with 
the constraint (2.1) so that the resulting field equations are those corresponding to 
the consideration of d5 as an off-shell central charge in four dimensions. We thus 
desire the field equations 

CIAo(x) = 0, A,(x)  = 0. (2.3) 

We can see how to achieve these field equations by a naive argument which we will 
make precise later. 

If we take A(x, x5) to have length dimension -1 then we expect our action to be 
of quadratic form 

J d4x dr5 A(x, x5)TA(x, x 5 )  (2.4) 

where T has therefore to be a differential operator of dimension -3. This may be 
formed from 0 8 5  or a:, which are equal by (2.1). We thus take the action 

/d4x dx5 A(O+a:)d,A. (2.5) 

We may rewrite (2.5), by integration by parts, as 

--$ / d4x dx5 ~35[(d@A)~ - 

We might suppose that (2.6) gives zero, since it is the integral of a total derivative, 
and it is usual to drop contributions from infinity. However, if we notice that the 
term being differentiated in (2.6) is the four-dimensional Lagrangian density needed 
to produce the equations of motion (2.3), we will proceed more cautiously. If we 
interpret the integral over x 5  in (2.4) as restricted to the half-space x 5  a x :  and neglect 
the contribution in (2.6) from x5  + $03 we immediately obtain the action 

This action clearly gives the field equations (2.3) on variation in A .  and A I ,  now 
without the constraint (2.1). 

Of course the derivation of (2.7) was ambiguous since if the constraint (2.1) were 
used (2.5) could be re-expressed solely in terms of the first or second terms in (2.6), 
thus giving only the first or second terms in (2.7). What we need is to consider 
variation of the action of the form (2.5) more carefully when we take account of the 
constraint (2.1). Since this is a differential constraint we must use variational methods 
which are sensitive to such a feature. 

We thus have to consider the problem of determining the equations satisfied by 
an extremum A of an action functional I ( A )  where A is subject to the further constraint 
h (A) = 0. This is set in the general context of an optimisation problem in the presence 
of an equality constraint, for which a precise mathematical theory is known (Pontryagin 
et a1 1962, Luenberger 1969, Lions 1971). The particular result of relevance is the 
Lagrange multiplier theorem, well known in mathematical physics, whose precise form 
(which is the basis of our work) is as follows. 
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Theorem (Lagrange Multiplier). (See Pontyagin et a1 (1982), Luenberger (1969) and 
Lions (1971).) If a suitably differentiable real valued functional I ( A )  on a Banach 
space X has an extremum at the regular point a under the constraint h ( A )  = 0 (where 
h maps X into another Banach space Y ) ,  then there exists an element y * E Y *  so 
that the Lagrange functional I ( A )  + y *h ( A )  is stationary at a ,  or 

(2.8) 

The equation (2.8) is the expected Euler-Lagrange equation with Lagrange multi- 
plier y*. We note that A must belong to a vector space, so that if the constraint h(A) 
also involves specification of boundary values such as in (2.2) then these must be 
subtracted from A in a manner dependent on their specific nature, as we will see 
shortly in specific cases. As a simple example suppose we were considering the space 
of all real continuous functions x ( t )  of one variable t on the interval [a, 61 such that 
x ( a )  = 0, x ( b )  = c. Such functions do not form a vector space. The problem can be 
re-expressed in terms of the continuous functions y ( t )  = x ( t )  - c ( t  - a  ) / ( b  - a ) ,  which 
do vanish at both end-points and so form a vector space. We have not spelt out the 
exact nature of the differentiability required on I and h nor other functional analytic 
niceties since we wish to concentrate on the main principles. However, we should 
remark that one of the important properties is that a be a regular point of the constraint 
h (Pontryagin et a1 1962, Luenberger 1969, Lions 1971). That is to say the FrCchet 
derivative h ' ( a )  maps X onto Y. This assumption is crucially related to the generalisa- 
tion of the classical inverse function theorem. 

Let us use the theorem to discuss the real scalar free field satisfying (2.1) and 
(2.2). We take for the initial form of the action the expression (2.4) with T = U&. 
Let us define the two-component vector U with u T  = (A,  a5A). We may express the 
functions U ( x ,  x '1 

I ' ( a )  + y*h'(a) = 0. 

U 

U I ( X ,  0) = u 2 ( x ,  0) = 0, 

= (U 1, U 2 )  = (0 i ( x ,  x '1 + A  1 ( X  ), 2(x, x 5 ,  + (X ' ) A  2(x  I ) ,  

where a ( x 5 )  is a fixed sufficiently differentiable function with ( ~ ( 0 )  = 1 and a(00)=0. 
We note that we may avoid problems of convergence of integrals at 00 by choosing 
the range of x 5  to be a finite interval [a, 61; all our results will be valid in that case 
also, so will not be given in detail. 

The weakest assumption we need to make on our functions is that on-shell the 
condition u 2 ( x ,  00)=0 is satisfied. This is to prevent the appearance of a propagating 
massless scalar mode with non-trivial central charge, so destroying the off -shell 
character of the central charge. 

We note that the boundary condition that we are imposing on u 2 ( x ,  x5)  may not 
be the most appropriate for quantisation, since it is only an on-shell restriction. The 
more general condition 85ul(x, 00)=0 off-shell, i.e. without requiring @A = 0, may 
then be more appropriate, but since it gives the same field equation as the on-shell 
constraint (being stronger), we will only use the on-shell constraint here. 

Let us call X the function space of two-component vectors U with this boundary 
condition and Y the function space of two component vectors with any boundary 
condition. The constraint (2.1) can be rewritten as 

0 1  
a5u =MU, M = ( a  0). (2.9) 
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and the action as 

I = d4x dx5 uTNu, I (2.10) 

Let T be the map T = ( a 5 - M ) : X - ,  Y.  The Frechet differential of T is ST(u) = 
T u  = a5u -Mu. Given y E Y, the fundamental theorem of differential equations 
Vssures us of the existence of U such that T'u = a5u -Mu = y ,  which shows that T' 
maps X onto Y, therefore the regularity condition is satisfied. Without loss of 
generality we can express the problem (2.9), (2.10) in the following canonical form, 
which resembles the usual optimal control problem (Pontryagin et a1 1962, Luenberger 
1969, Lions 1971) 

I = d4x dx5(u +uo)*N(u fuo), a5v =MU  MU^, (2.11) I 
where U = U + uo, 
constraint. 

0; uo  is the initial data associated with the differential 

This problem can be generalised in the following way: 

I = d4x dx5 2 ( u ,  uo) ,  J 
for U satisfying 

a5u =f(V, u0) ,  ~ 1 ~ 5 ~ ~ ;  = 0. (2.12) 

We are now able to analyse the field equations and boundary value conditions 
associated with this general problem. 

The Lagrange theorem and Riesz representation (Pontryagin et af 1962, Luenber- 
ger 1969, Lions 1971) theorem yield the existence of A such that 

89 
d 4 ~ d ~ 5 - * S ~ +  

5 cw 

I sv 

I Suo I JxI 520 d4x dx - * S U O -  d4x dA dx - * S U O = O .  

Without loss of generality we may take A I x 5 = , = O  (since only the differential dA 
appears in the abovej, and integration by parts gives 

d4xdx I 
I d4x dx (E S U O  + - Sf A S U O )  = 0. 

Suo 

( 2 . 1 3 ~ )  

(2.136) 

( 2 . 1 3 ~ )  holds for all Su, in particular for St. vanishing at x5  =x;. Integration by parts 
in ( 2 . 1 3 ~ )  gives 

(2.14) 
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It is a well known result that (2.14) implies differentiability of A (Pontryagin et a1 
1962), therefore we have 

l d 4 x  d x ’ ( g + g * A  + a 5 A  ) Sv = 0 ,  

which implies 

(2.136) yields 

(2.156) 

We also have as a field equation the differential constraint 

a5u = f ( u ,  uo) .  (2 .15~)  

(2.15) with the boundary conditions clx5=x;j = 0, A / x 5 = 3 D  = 0 are the field equations for 
the general problem (2.12). We remark that we may take A / X ~ = L 1 3  = 0 without loss of 
generality; moreover this is the unique boundary condition which implies the field 
equation ( 2 . 1 5 ~ ) .  Furthermore, in the first-order formulation we are following we 
have 

S Y / S V  = SY/Suo, SflSu = Sf/Suo, 

which are a direct consequence of the decomposition U = v + uo. Therefore from 
(2.156) we obtain 

A l x5=x;1  = A  1 x 5 = 3 0  = 0. (2.15d) 

Finally we may formulate an unconstrained action for our problem (2.12) 

I = d4 x dx’ [Y(~,  U O )  + A  ’( f ( c ,  U O )  -&U I], (2.16) 

with the boundary conditions A l X 5 = =  = 0, v lx5=x;  = 0. These mixed boundary value 
conditions are a general property of the cone formulation we are following. This is 
in fact the usual mixed boundary value conditions one has in the general optimal 
control problem (Pontryagin et a1 1962, Luenberger 1969, Lions 1971). We are now 
able to apply these results to the scalar free field; we have 

I 

z ( V ,  U o )  = (U f K O ) ~ N ( V  + Uo), f ( u ,  uo)  =Mu +MU@ 

We directly get the field equations 

2N(v +uO)+MTA +d,A =0, MV +MUO-aSv = 0, (2.17a, 6) 

from which we obtain the following differential equation for A : 

aZA +MTa,A - N M N - ’ ( M ~ A  + a , ~ )  = 0. 

We also notice that NMN-’ = M T ,  therefore 

a:A = M ~ M ’ A  =OA. (2.18) 

The boundary conditions (2.15d) together with this second-order differential equation 
yield A ( x ,  x 5 )  = 0. From (2.17) we have Nu = 0, ~ S U  =Mu.  The corresponding com- 
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ponent equations are 

n u  1 = o u 2  = 0, a5ul = U 2 3  85u2  = nu 1 = 0, 

and from our asymptotic assumption on the function space X: U& = 0, we have 

dSA(x, x = 0, u q X ,  x 5 )  = 0. (2.19a, b ) 

We have thus obtained the correct field equations, (2.19), in four-dimensional space- 
time from the five-dimensional action (2.10). In the process we have discovered that 
the x 5  integration is to be interpreted as over a half-line to +o;, (or -a), and that the 
constrained action 

5 d4x dx ' A 3 5 A  (2.20) 

is to be interpreted as a half-space integral. The other aspect of the constrained 
variational problem is that we have now to take account of variations with respect to 
the boundary values as well as with respect to fields U and A satisfying homogeneous 
boundary value conditions. The conclusion of our analysis is that the dynamics for 
such a field can be regarded as occurring in a five-dimensional space-time in whose 
half-space boundary is our four-dimensional world. 

We may extend the above analysis to a free chiral spinor $ satisfying the same 
constraint (2.1). We may again introduce the two-component vector u T  = (1&,4) with 
as$ = 84, and consider the constrained Lagrangian 

j d 4 x  dx5 iiTNu, a5u =MU, 

where 

(2.21a, b )  

We may consider the same behaviour of U at infinity as before: &U = O  at xS=OO. 
The variational equations are as before, and we have the field equations 

c lu  =o, (2.22) 

which together with the constraint (2.21b) yield d i u  = M 2 u  = Ou = 0. Therefore, 
using the boundary condition, we have &U = 0, or equivalently, 

( 2 . 2 3 )  a,$(x, x5)  = 0, a54 (x, x ') = 0, 

and from (2.216) 

B$(x, x 5 )  = 0, 24 (x, x s, = 0. (2.24) 

Equations (2.24) are the x-space equations appropriate for massless spinors with an 
off -shell central charge (which vanishes on-shell). 

Similar actions may easily be given for higher spin fields by the addition of suitable 
Lorentz indices to the scalars and spinors already discussed. Mass may alw be included 
by the modification B + (B  + im), 0 + (0 + m 2 )  in the above expressions. We note that 
m corresponds to a mass in four dimensions, there are no massive excitations in the 
x direction which have to be removed to unobservably large energies by spontaneous 
compactification or other techniques (Witten 1981, Salam and Strathdee 1981). 
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We finally add that even for an unconstrained field in four dimensions we may 
define a constrained action in five dimensions along similar lines. We now consider 
the five-dimensional action (2.20), but now with the constraint 

A (x, 00) = 0. (2.25) 

Since the action (2.20) is a total derivative, and so only with dependence on A(x, x : )  
and A(x, CO), the constraint (2.25) will therefore lead to the field equation (2.196) at 
x = x o .  We note that (2.25) cannot be used with constraint (2.1) since the wrong 
field equations then result. We can expect to be able to write down the same 
five-dimensional action for either of the constraints (2.1) or (2.25). This will be of 
importance if we wish to use a unified formulation for multiplets with or without 
degenerate central charges, as will be needed for a superfield formulation of the 
solution of Taylor (1981), which involve the former as compensating multiplets for 
the latter. 

5 5  

3. Free fields with two extra dimensions 

We gave in the introduction good reasons for trying to integrate over the extra central 
charge dimensions to allow us to construct extended WSYMS or N- SGRS, beyond the 
N = 3 barrier, in terms of maximally extended superfields. Even for N = 2 this was 
shown to require the use of at least two extra dimensions. We now extend the 
discussion of the last section to this case, with the additional variable being x‘. The 
constraint (2.1) now becomes 

(o-a: - a:)A(X, x5,  x6) = 0. (3.1) 
If we wish to reduce the dynamics to four-dimensional free field equations for a set 
of fields at x5  = x6 = 0 (we take x i  = 0 and x: = 0 for simplicity here, though these 
should in general be regarded as arbitrary points) we find that in general this set of 
fields will be infinite in number. One way to see this is in terms of the independent 
derivatives which we can construct from powers of as and a6 using the constraint (3.1); 
these consist of the sequence of powers a= {a5, a~-1a6}n21 .  In other words there will 
be an infinite sequence of boundary value fields composed of A(x, 0) and aA(x, 0). 
Dividing by suitable inverse powers of 0 to obtain correct canonical dimensions we 
expect that half of these will propagate, half disappear, in four dimensions (Gorse et 
a1 1983). 

To obtain a finite number of boundary value fields we can reduce a to a finite set 
by various further constraints beyond (3.1). The most powerful is that for some real 
constant b 

a& = b&A. (3.2) 
Constraint (3.2) arises in the decomposition of the generai degenerate representation 
for N = 2 SUSY into irreducible representations (Restuccia and Taylor 1983). A more 
general constraint is that for some constant c, 

a:A = C C I A ,  a,’A =( l -~ )c I lA .  (3.3) 
This constraint arises naturally in the decomposition of degenerate N = 4 SUSY rep- 
resentations with two real independent central charges into irreducible ones (Bufton 
and Taylor 1983a). 
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We first discuss ( 3 . 2 ) .  On combination with ( 3 . 1 )  we have (3 .3 )  with c = ( 1  + b2)- ' .  
We may thus use the method of 0 2 ;  we introduce the four-component vector 
u T  = (A, a5A, 8 4 ,  a 5 a 4 )  with the same asymptotical behaviour as before: asA = 
&A =a5&A = 0 at x 5  = x 6  = 00. Then we can rewrite the constraints (3 .1 )  and (3 .2 )  as 

asu =MU, &U = bMu, 
where 

1 0  1 0 o \  

(3 .4a ,  b )  

In order to formulate an unconstrained action with independent Lagrange multipliers 
we decompose U in the following way, 

U = U  + w + U @  

where 
(3 .5 )  

( 3 . 6 ~ )  

( 3 . 6 6 )  

uo  as usual is the independent initial data of the system (3 .4 ) .  In terms of (3 .5 )  the 
constraints ( 3 . 4 )  are equivalent to 

(3 .7a ,  6 )  

Given uo, ( 3 . 7 6 )  gives the evolution on the hypersurface x6 = constant, while ( 3 . 7 a )  
propagates the information from x6  = constant to the whole x5, x6 space. 

We take the unconstrained action with Lagrange multipliers to be 

5 6  t r=u(x ,x  , x  ), 

W = w(x, x ), 

U / x 5 = 0  = 0,  
6 w I x 6 = o  = 0. 

a5u =MU +MW  MU^, &W = bMw + bMU0. 

I = d4x dx ' dx '{( U + w + UO) 'N ( U  + w + UO) + A  ; [M(u + w + UO) - ~ s u ] }  

+ d4x dX6 A,T(bMW + b M U o - a 6 W ) ,  ( 3 . 8 )  

I 
I 

where 

We can impose without loss of generality the boundary value conditions 

h 5 l x 5 = m = 0 ,  ~ ~ l ~ ~ = ~ = 0 ,  (3 .9a ,  6 )  

and we can prove in the same way as before that these are the required conditions 
to assure a satisfactory continuity behaviour of A s  and A 6 .  

The field equations are, together with (3 .7 ) ,  

  NU +MTA5 +asAS = 0, 

I dx 5(2NU -t- MTh 5 )  + bMTh6 + ad 6 = 0, 

I dx6 dx '(&VU + M'A 5 )  + dx bMTA6 = 0. 

( 3 . 1 0 ~ )  

(3 .10b)  

( 3 . 1 0 ~ )  
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In the usual way we get from ( 3 . 1 0 ~ )  

and from (3.106) we obtain 

A5lX5=~+bMTA6+a6A'=0. (3.116) 

(3.11) implies as before h6(x,x6) = 0. We thus get from (3.11b) 

A j l x 5 = 0  = 0, (3.12) 

which together with (3.9a), ( 3 . 1 0 ~ )  and (3.7) imply A5(x, x 5 ,  x 6 )  = 0. Consequently, 
we have from ( 3 . 1 0 ~ )  

Nu =0 ,  (3.13) 

or equivalently 

o u = o .  
We also have from the constraint (3.7) 

a:A = cm = 0, a&4 = 6*cOA = 0 

(3.14) 

(3.15u, 6 )  

Using now the boundary conditions on A at x5  = x' = CO we get 

ajA(x, x 5 ,  x') = a&(x, x5, x6) = 0, LIA(x, x s ,  x6) = 0. (3.16) 

When (3.3) alone is used, we may consider the four-component vector [U which satisfies 
the constraints 

where 

(3.17) 

(3.18) 

The full dimensional action with Lagrange multipliers is now 

I = d4x dx ' dx '[[U 'NU + A J(M5 - a 5  )U ] + d4x dx ' A l (M6 - as)( M.' + U O ) ,  (3.19) I I 
where we are using the same decomposition (3.5) for [U, and 

I 

The equations of motion are so similar to the ones discussed already that we do not 
discuss them in detail but just state that four-dimensional equations are 

U2 = U 3  = 0, asu = a6u = a5u4 = a6u4 = 0, g U 1  = 0. 
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There are thus two propagating massless scalars, U and u4, and two vanishing auxiliary 
fields u2 ,  u 3 .  This agrees with the component content of the two-central charge 
multiplet of N = 4 SUSY (Bufton and Taylor 1983a). 

It is straightforward to extend the above analysis to the case of three or more 
extra dimensions. In the case of three extra dimensions, say x5, x , x , the spin- 
reducing constraint (3.1) now becomes 

( C 1 - a : - a ~ - a ~ ) A ( x , x s , x 6 , x 7 ) = 0 .  (3.20) 

We may again deal with infinite multiplets defined by the boundary conditions at the 
edge of the eighth-space x5  2 0, x 2 0, x7 2 0 by introducing a sequence of differential 
operators extending a defined earlier but now including d7 and taking account of (3.20) 
instead of (3.1). 

To avoid the expected infinite set of propagating fields we may impose conditions 
similar to those of (3.2) or (3.3). For N = 4  SUSY the first of these constraints 
corresponds to complexifying the central charges, the second to including further 
central charges in independent directions. Actions can be constructed by analogy to 
those given above and shown to give satisfactory equations of motion. Similar 
extension to include higher spin fields is also possible. 

We may finally also extend the analysis of an x'-independent scalar to the case 
of an x5- and x6-independent one. This is identical to the discussion associated with 
(2.25); there is only the non-trivial equation of motion (2.196) at x' = 0. 

6 7  

6 

4. Interactions in extra dimensions 

We have so far only discussed free field examples of how we may embed our 
four-dimensional world as the 'edge' of a half-space (for one extra dimension) or of 
an ( n  + 1)th-space for n extra dimensions. Even in those cases we did not consider 
Abelian gauge fields in any detail. We will attempt to remedy that omission, and 
build interacting theories by means of the minimal gauge principle. It appears more 
difficult to develop our theory to include arbitrary self-interactions, a situation possibly 
to be welcomed rather than otherwise; we will return to this in our final discussion. 

We restrict ourselves to one extra dimension, though extension to larger numbers 
of dimensions can be given straightforwardly by the methods we have discussed so 
far; again we take the half-space to be 0 S X '  < 30, though the lower limit is to be 
regarded as an arbitrary value. We will also only consider in detail a charged scalar 
field A in minimal interaction with a U(i)-gauge field A,, so we wish to obtain at least 
the four-dimensional equations of motion 

There are four cases to consider, according as whether the matter or the gauge field 
has no dependence on x 5  or satisfies an interacting analogue of the spin-reducing 
constraint (2.1). We take first the case 

a5A = a5A, = 0.  (4.4) 
We discussed the non-interacting version of this case at the end of § 2 ,  as far 

as the scalar field A was concerned. Let us analyse the vector field A, in the 
absence of the scalar. As usual we introduce the two-component vector U, with 
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uf = (Ap, asA,). The simplest five-dimensional action to introduce has Lagrange 
density u~N”’u,, where 

with 6,, = S,, -a,a,/U. The constraint is asu, = 0, and by means of the Lagrange 
multiplier theorem the unconstrained Lagrangian is 

where the integral is taken as usual over the half-space ~ ’ 3 0 .  The field equations 
are, as before, 

2N,,uV -ashP = 0, (4.6) 

dx5[2N,,u”] = 0, a,u, = 0. (4.71, (4.8) 

Combining (4.6) and (4.7) gives A,(x, 0) = 0, and from (4.6) and (429, $A, = 0. We 
therefore have the expected field equations 

aT,,(A,) =&A, = o (4.9) 

where F,,(A,) = al,A,1. 
In the presence of the charged scalar field A also satisfying (4.4) we introduce the 

further complex two-component scalar U with uT = (A, &A). It is appropriate to 
introduce the current two-component vector J, ( U ) ,  with 

J,I(U) = U + L i Z , U  ( i  = 1, 2), (4.10) 

1 0  0 1  
L 1 = ( o  o), L 2 = ( 1  o). 

Then we add to the Lagrange density uZN””u, for the free vector field, the expressions 
U +  Nu for the free scalar field, with N = ( A  ?), and i u z ~ ~ J p ( u ) + u ~ L ~ u , u + L 2 u +  
U zL2u,u’L lu  for the interaction term. The total unconstrained five-dimensional 
Lagrangian is therefore 

(fu ZN *”U,, + U ‘NU + iu TJ’ ( U )  + U zL 1u + L ~ u  

+ u ; ~ 2 u p u + ~ 1 ~  + A  TCa5U, + A  +asu + A  a5u+).  (4.11) 

The field equations are therefore 

N , , u ” + ~ J , ( u ) + ~ L ~ u ~ ( u + L ~ u ) + ~ L ~ u ~ ( u + L ~ u ) - ~ ~ ~ ~ = ~ ,  (4.12) 

NU - u,T(SJ” ( u ) / S U + )  -ash + (u ,TLIu”)L~u + ( U ~ L Z U  , ) L ~ u  = 0 ,  (4.13) 
r m  

J dx ’[N,,u ’ + 2, ( U )  + 2L 1u fi ( u + L ~ u )  + 2L2u IL ( u + L l u ) ]  = 0, (4.14) 
0 

Iom dx’[Nu -u~(SJ”(u) /6u+)+(u%luIL)L2u + ( u % 2 u w ) L ~ u ] = 0 ,  (4.15) 

(4.16) asu, = asu = 0. 
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From (4.12) and (4.14) together with the boundary condition A,(x, m)=O we obtain 
A , ( x ,  0) = 0, and similarly from (4.13) and (4.15) we have A (x, 0) = 0. Moreover the 
homogeneous constraints (4.16) imply a:A, = $A = 0, so that A,(x, x5)  = A (x, x5)  10. 
We therefore obtain the four-dimensional field equations (4.1)-(4.3) for the boundary 
values A(x, 0) and A.(x, 0). The above construction (4.11) had to be successful since 
it is the action of as in the correct four-dimensional action to reproducing (4.1)-(4.3). 
We note that the extension to the non-Abelian case is most easily achieved by defining 
the field strength two-component vector UWu(uA) defined by 

UEvi ( u A  1 = alpu:Ii + i f a b c ~ E ~ i ~ v ] c  (4.17) 

where a denotes the adjoint representation of the gauge group G with structure 
constants f a b c  and L, ( i  = 1,2) are given in (4.10). The five-dimensional Lagrangian 
(4.1 1)  is now to be modified by the replacement of the first term by 

(4.18) 

with obvious modification of the current -U,  interaction term and others in (4.11) to 
take account of the representation labels also present on the scalar field U .  The 
remaining argument to obtain the usual four-dimensional field equations is little 
changed, so we do not give it here. 

We next turn to the case when the scalar field A carries an off-shell central charge, 
so satisfies (2.1), whilst A, still satisfies (4.4). The only change to (4.11) is the 
replacement of a5 in the last two terms in (4.11) by (a5M),  with M given by (2.9), 
though with 0 replaced by DZD”, D,  = a, - i ( l ,  O)=u,. Similar replacement must be 
made in (4.13) (in this case a 5 + a 5 + M T )  and the condition on U in (4.16). The 
argument proceeds as before to show A AI (x, x5) = 0, but the discussion of A (x, x5) needs 
a little more care. As usual the boundary conditions and (4.13), (4.15) may be used 
to show A(x, O ) = O .  We now wish to combine (4.13) and the new constraint (2.11) 
on U to obtain a second-order differential equation in as for A. 

The detailed form of (4.13) is 

[ N  - U LLZF + 2( U ,’L 1~ @ )L 2 + 2( U ~ L Z U  cI )L 1 3 ~  = (a5 + M ‘)A. (4.19) 

If we can invert the differential operator on the LHS then the resulting equation 

(a5  - M ) ( N  - U LL;, + ( U  ,’L I U  I’)L2 + ( U  ZL~U @)L1)-’(85 +MT)A = 0 (4.20) 

has the required form. On use of the constraint (4.4) for A, we find that the LHS of 
(4.19) is simply (N  -A”8, +2A@A,), whose inverse will exist for a large class of A,. 
Under that assumption the argument leading to the four-dimensional field equation 
(4.1) for A(x, 0) and d5A(x, 0) = 0 will go through as before. 

The problem of constructing a satisfactory five-dimensional theory for which the 
gauge field has a non-trivial central charge transformation is not as simple due to the 
presence of the constraint and of the nonlinear structure introduced by the current 
J,(u). When J, = 0 we may take the constraint on A ,  as in (2.1), and thus have the 
Lagrangian (4.5) with a5 in the last term in (4.5) replaced by (a5 - M ) .  We also need 
to constrain the longitudinal part of A ,  by the condition 13 

a5(a,Ap) = 0. (4.21) 

We note that (4.21) is gauge invariant under the gauge transformation SA, = d,A(x), 
with x5-independence of A. We must add to the Lagrangian (4.5) a further Lagrange 
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multiplier term ensuring (4.21), of form 

J d5xp*85(8,,A@) 

~N,,,u” - (85 +MT)A = 0, (4.22) 

lom dx5(2NPvu” -MTA,,) = 0, (4.23) 

(as  -M)u,, = 0, (4.24) 

U,, = ;N;: (as + M ~ ) A  ” + a,,u (4.25) 

where N i :  = alCi-’qWv with U, the usual Pauli matrix (? A), 
(4.26) 

and the constraint (4.21). If we apply the operator ( & - M ) a l  to (4.21) and use (4.25) 
we obtain +(a5 - M ) u ~ ( ~ ~  +MT)A,, = 0. This is second order in 85, so A,,(x, x5)=0.  The 
boundary value field equations are therefore 

a,,‘F,,,(A,\(x, 0) = 0. (4.27) 

We may use the spin-reducing constraint on the transverse part A: of A,, and the 
vanishing of BA: to deduce the x5-independence of the boundary constraint 
that a5AT = 0 at x5  = CD implies that 

a ~ , ,  =a,d (4.28) 

for some scalar 9. The constraint (4.21) then leads to the expected equation of motion 

09 = O .  (4.29) 

Thus 4 (x, 0) is a propagating massless scalar field, as expected. 
We may try to extend the above in various directions. Firstly we can couple the 

current J,,(u) as in (4.11). However, the presence of J,,(u) in (4.21) prevents the use 
of (4.24) to deduce (4.26). Secondly we may extend to the non-Abelian case, so using 
(4.17) and (4.18). Due to the nonlinearity of the modified version of (4.21) we cannot 
solve simply as in (4.25), and here again we do not obtain the vacishing of AW(x, x’). 
Finally we may take the non-Abelian case in the presence of matter with either trivial 
or non-trivial central charge decmdence. Both these cases add further complications 
to an already difficult situation, and we have not yet obtained a solution. We conclude 
that gauge fields are easy to fit into the central charge framework if they have trivial 
central charge properties, still possible to incorporate if they are Abelian, and de- 
coupled from all matter if they have non-trivial central charge features, and very 
difficult, if not impossible in that case to include if they are non-Abelian or coupled 
to charged matter. We hope to return to a further analysis of this question elsewhere. 
We finally add that both matter (scalars or spinors) and gauge fields have been handled 
throughout this section by means of a first-order formalism, using two component 
vectors. Indeed the more obvious case of a 2 x 2 matrix notation for the gauge vectors 
does not seem easy to construct. We do need an identical framework in terms of 
which we may discuss all of these fields if we wish to require supersymmetry. We 
now have such a framework available, and could proceed to extend our earlier 
discussions to include SUSY invariance. We will find it more immediately if we use 
superfield techniques for this approach, and turn to that now. 
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5. Superfields in extra dimensions 

We have found that it is possible to describe the major aspects of free and interacting 
field theories in four dimensions as having the same field equations as if the theory 
arose from a field theory described in higher dimensions with a suitable constraint. 
However, the constructions appear somewhat artificial, whilst the remarks in the 
introduction indicate that the extra 'central charge' dimensions are essential to make 
use of the full superspace in extended SUSY theories. We will now discuss these cases 
in detail. 

Let us first consider an artificial use of the full superspace measure with a constraint. 
We take N = 1 SUSY and consider a chiral superfield cP which has the constraint 

Da@ = 0. 15.1) 

We assume cP has canonical length dimension -1, so that the only superfield action 
available on using the full measure d4x d2H d ' i  is 

( 5 . 2 )  

We may apply the theorem of # 2 ,  with the Lagrange multiplier being a spinor superfield 
;i and unconstrained action 

I d3x d40 d*~[d ,~d , -h"D,cP+A"D, ,~~] .  15.3) 

The resulting variational equations are (5.1 i and 

@+Dah" = o .  
From (5.4) we may immediately deduce 

(5.4) 

D"D,cP = 0 ( 5 . 5 )  
which, together with (5.1),  is the well known equation of motion for a chiral superfield. 
We note that the superspace integration does not play the same role as the x5  or .x6 
integration discussed up to now, but has its traditional form. 

Let us extend our analysis to N = 2. The full superspace measure without central 
charge dimensions is d4x d4H d4& with dimension 0. In order to consider the N = 2 
chiral superfield cP and the associated Lagrange density Q'cP we require at least two 
extra dimensions x '  and x'. If we are considering a central-charge independent chiral 
superfield then we can consider the constraints 

as@ = as@ = 0, 

Da,@ = 0 ( i  = 1, 2). 
15.6) 

(5.7) 
The constrained action is taken to be 

I d4x dx' dx6 d4H d4@ ( 5 . 8 )  

and inclusion of Lagrange multipliers gives the unconstrained action 

I d4x dx' dx6d4H d"(o~,'Q,-~',,;i"'.~,+D,,A"'cP' +A;a ,4+A&dJr t )  

d4x dx d48 d48(A ~ 3 6 ~  + A  &,p + )  (5.9) 
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w h e r e @ = $ + p  +@0,cC/I,5=,:=0,&p = O , ~ ~ I , h = , ~ = O a n d ~ ~ = ~ ~ ( x ,  6, e ) i s  theinitial 
data associated with the superfield @. This decomposition is necessary in order to 
satisfy the regularity condition of the constraints. The Lagrange multipliers and 
A"' are independent of x 5  and x6 and A s ,  h6 satisfy the usual boundary condition. 
The resulting equations of motion are 

@ + D , , A ~ ' - ~ , A ~ = O ,  I dX '(@ +DalA " I )  - = 0, ( 5 .  loa, 6 )  

l d x 5  dx6(@+DalhOL1) = 0, ( 5 . 1 0 ~ )  

D,, I dx2 dx6@ = 0, (5.11) 

a,$ = as@ = 0. (5.12) 

From (5.11) and (5.12) we obtain (5.6) and (5 .7 ) .  Using these results in (5.10) we 
get A = h 6  = 0, 

( 5 . 1 3 )  

Multiplication of (5.13) by D4 = E~~"~"'""D,,D,,D,,D,, gives the equation of motion 

D4@ = 0. (5.14) 

We note that in combination with the constraints ( 5 . 7 )  we obtain the ,y-space equation 
of motion at x = x 6  = o 

El2@ = 0 ( 5 . 1 4 ~ )  

which at 6 = 0 gives the incorrect equation of motion due to the presence of one too 
many powers of 0 on the RHS of ( 5 . 1 4 ~ ) .  This is related to the component form of 
action arising from (5.8); in particular the contribution from the scalar A(x, x5, x6) = 
@(x, x5 ,  x6, 0) is 

@ + D,,h '" = 0. 

J d6x A'O'A. (5.14b) 

Since &A =a& = 0 then (5.146) is determined purely in terms of the constant (and 
so boundary) value A(x )  of A(x, x5, x6). Absorbing the area of (x5, x6) integration 
(assumed finite here) into A (x ) we thus obtain the four-dimensional action proportional 
to I d4x A'U2A, with corresponding field equation 0'A identical to the 6 = 0 part of 
( 5 . 1 4 ~ ) .  Imposition of the further reality constraint D 2 @  = B2@+ (to make the vector 
field in 0 real) will still lead to (5.14a), as can be seen by the fact that the component 
form of the action still has contribution (5.146) from the scalar A.  

In order to obtain a satisfactory Lagrangian for this case we may proceed by 
following the method of 9: 2 more closely. Thus we introduce a set of four superfields 
as the components of the four-vector U with 

U1 =@, a5ul = u2, a6uI = U33 a5a6uz = u4. (5.15) 
The superspace action (with the added reality constraint mentioned above) 

/ o  0 0 1\ 

(5.16) 

\ 1  0 0 o i  
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with constraints (5.7) and (5.15) and where r is, as usual, the quadrant x5 3 0 ,  x 6 a 0 ,  
now has field equation at x5  = x6 = 0 with only one power of 0 in (14a); the correspond- 
ing scalar action is 

I d6x u+Ou 

where U' = (A', a5A', a d ' ,  a s a d ' ) .  Using the constraint that A = 0 at x 5  = CO or 
x6 = CO then we obtain the usual four-dimensional action Id4x A'OA. 

There is a clear disadvantage of the above procedure in that the action (5.16) is 
explicitly non-local due to the presence of the U-' term. Whilst the approach may 
also be used for higher N, this non-locality increases; for N = 4 we must include a 
factor U-3 in (5.16). Whilst this non-locality is absent in the component action it will 
be present if we try to construct self-interaction even in the case of N = 2. For 0 
must then be replaced by the square of the gauge-covariant derivative 9&, whose 
inverse will have non-locality when expanded in powers of the gauge coupling constant. 
We will therefore not follow this method any further. 

An alternative approach is to solve the constraint (5.7) by @ = f i 4 w  and to use the 
reality condition which defines the irreducible multiplet DZ@+ = Di.@. The full super- 
space action for @ and w is 

[d4x d ~ ~ d x ~ d ~ ~ d ~ ~ ~ ~ ~ ~ ( @ ~ w + ~ ~ h ~ w + ~ w + D ~ ~ ~ ~ v ~ ~ + ~ ~ )  (5.17) 

where the Lagrange multipliers are independent of x5  and x6 .  We assume the boundary 
conditions @(x, e, 8, x5, m)=@(x, e, 8, CO, x6) = o and w (and v i i )  satisfy 
w (x, 8, $, x5, a)= w (x, 8, $, CO, xg) = 0. (5.17) gives the correct four-dimensional action 
1d4 x d48(@* + HC). 

However, we cannot use the same method for N = 4 or 8, since the equivalent of 
(5.17) cannot be given for dimensional reasons. There thus seem to be basic differences 
between multiplets with and without degenerate central charges when we attempt to 
construct full superspace actions with N 3 4 .  We will have to take note of this for 
the construction of N = 4 SYM and N = 8 SGR (Hassoun et a1 1983). 

We now turn to the N = 2 hypermultiplet (Fayer 1976), which is the fundamental 
multiplet of the degenerate or spin reducing N = 2 representations. It may be described 
(Sohnius 1978, Taylor 1980) by the docblet superfield Qi with 

Da&, =Ba(i@i) = 0. (5.18) 

It is known (Restuccia and Taylor 1983) from the representation theory of N = 2 spin 
reducing multiplets that a further reality condition must be applied in order to achieve 
an irreducible representation of N = 2 SUSY. The simplest case of this is 

= 0. (5.19) 

We take the full superspace action to be 

I d4x dx dr6 d48 d48  @;Qi. (5.20) 

We take the region of integration in (x5, x6) to be the general quadrant x5  a x o ,  5 x a x o  6 

together with the constraints (5.18), (5.19). 
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We remark that the constrained action (5.20) with constraints (5.18), (5.19) is 
manifestly invariant under SUSY and central charge transformations. Let us prove it 
in detail. 

Consider first central charge transformations 

x ' = x ,  8' = e, p = e; x S r = x  + a ,  

We note here that we have to transform the region of integration in the central 
charge dimensions, since otherwise the action (5 .20)  would not be invariant. We also 
know from the transformation property of scalar superfields 

(5.21) 

x6' = x6 + b. 5 

@:(x, e, $, x s  + a ,  x 6  + b )  = @, (x, e, e, x 5 ,  x6). 

We have 

dxs'dx6'  @T'(x5', x6')@',(x5', x6'), 

51 5 6' 6 where x o  = x g  + a ,  x o  = x o  + b. 
Consider a change of integration variable in 1' :  

X 5 '  = x s  +a,  x 6' = x + 6 ,  

we have . .cc .x 

dx5 dx6@:'(x5+a, x6+b)@:(.  . ,). 

Now using the transformation property of superfields (5.21) we obtain I '  = I .  This is 
the very well known result that the Lagrangian density must transform as a scalar 
density, This is the case because the Jacobian is 1. The same result is vaid for SUSY 

transformations 

x ' = x  +ieaf- i tae ,  8 ' =  0 +t, el=e+5; z ' = i  + et + gf, 
because the super Jacobian of the transformation is also 1. This may be seen from 
the transformation matrix (1 + A  J, where 

0 0 ( Y F 6 , L  
A = [ ;  ; ; 1. 

SinceA"=O, n > l ,  we h a v e s d e t ( l + A ) = e x p s t r l n ( l + A ) = l .  
We note the difference when we are considering field equations. In  doing so we 

are interested in the functional derivative of the action with respect to the fields, 
therefore 

In this case the boundary is fixed because it is independent of the fields. A similar 
result will hold for all actions written as integrals over superspace based on the cone 
r. 
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The action (5.20) is a functional of the initial data of the differential constraints 
(5.18), (5.19). Following the formalism we have developed, it can be shown (see 
appendix) that the field equations are the correct on-shell equations for the hyper- 
multiplet. 

We are now able to construct an unconstrained superfield action, by following the 
Lagrange theorem of 9: 2. In doing so, one may divide the constraints (5.18), (5.19) 
into two sorts, one of which restricts solely the algebraic &structure of the superfields 
while the other restricts the z dependence of these fields, which of course is given by 
the spin-reducing condition, a$$ = U4. The Lagrange multiplier associated with this 
constraint has the usual boundary condition, while the Lagrange multipliers associated 
with the &constraints have the appropriate structure corresponding to an integral 
representation of y *  h (we are using the notation of 9: 2) where y *  belongs to the 
dual-space of the Banach functional space Y. This approach is completely general 
and allows us to construct an unconstrained action for the constrained problem. The 
unconstrained fields associated with the z propagation are always fields on the vertex 
of the z cone. 

One may also expect further simplifications for a given constrained action. Consider 
the case of the scalar field which we have analysed in 9: 2. We have shown that the 
variation with respect to the boundary fields gives solely the restriction 

A Ix: = A loo. (5.22) 

Hence we can reformulate the problem as an unconstrained action 

/dfldx5[uTAiU +A(Mu -&U)] (5.23) 

where now the functional space of the Lagrange multipliers satisfies (5.22).  The field 
equations are those we have found, and the Lagrange multipliers are uniquely deter- 
mined. It therefore turns out that the information contained in the boundary fields 
about the field equations is equivalent to a boundary condition on the Lagrange 
multipliers. 

We are now able to formulate the constrained action (5.20) in the same way. 
Consider as a first step the following action associated with the expression (5.20) 

expressed in terms of the boundary fields: 

+ k‘(a5u I + v t  - U; ) ’  + A  ‘a6@‘ + HC} (5.24) 

where we have decomposed @ = u l + u l ,  & @ = v z + u z ,  where v l /x: ,=u21. : ,=0  and 
u,(x, e ) ,  u2(x, 0)  are the fields on the vertex of the z cone. We assume @, K ,  lf and 
A to be superfields and pl, k 2  to have the transformation law 

6/L’ = -6(OK +SKY (5.25) 

where 64 = d f ( y ’ ) - 4 ( y ) ,  and y = (x, 8 , ~ ) .  Under this assumption the action (5.24) 
is invariant under supersymmetric and central charge transformations. The field 
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equations are 

ai +(DK - & A i  = 0, (5.26) 

(5.27) 

I L i = - ( e ~ + B E ) i ,  (5.28) 

(5.27) corresponds to the variation with respect to U : ,  and the equation associated 
with respect to the variation of U ;  is redundant. We can see that (5.27) can be 
eliminated, after using (5.26), if we consider appropriate boundary conditions on h i ,  
Kt and I?;. We also notice that (5.28) determines only p but does not give any 
further information about @ and K, which are the fundamental geometrical objects. 

We may now write the unconstrained action which follows from the above analysis, 

I =  d4X d48 d 4 ~ d x 5 d x 6 ( @ + i @ i + b ~ E ~ @ + i ) + D ~ K ; @ i i ) + A i a 6 @ i + ~ c )  (5.29) 

where K = K ( x ,  8, x5), and all the objects are superfields. The action is manifestly 
invariant under supersymmetry and central charge variations. We assume the func- 
tional space satisfies the boundary conditions A i l m  = A i l x g  ='o, K; Ix: =K; Im, a& Im = 

I,.;, I?; I*;= I m ,  asK; I x ;  = a5K; l m .  We notice that all these are covariant condi- 
tions, and also correspond to the component cases we considered in previous sections. 
The field equations are 

@ ' + ( D K + D X ) '  =adi, (5.30) 

D ail .@.  1 1  = D .  a(z .@.  11 = O ,  (5.31), (5.32) 

I, 

as@'' = 0. 

From (5.30) we get a 2 A  = 0, and from the boundary conditions A i  = 0. 
Let us define 

From (5.30) and (5.31) we get 

(5.33a) 

where we have used the boundary conditions for K. We also obtain 

D:(&) = 0. (5,336) 

We notice that these are covariant equations, as they should be. (5.33) implies 0d i  = 0, 
therefore 

jdx50@' = d ~ ' a : @ i = a 5 @ ~ l ~ - a ~ ~ ~ l ~ ~ = O .  I 
From the general on-shell boundary condition we have imposed 

formulation (see 8 2) 

a5@i100 = 0. 

on all of our 

(5.33c) 
We obtain the correct on-shell field equation for the hypermultiplet. 
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We have thus succeeded in obtaining from the general Lagrange formulation, in 
terms of the boundary fields, an unconstrained full superspace action directly in terms 
of 0, K and I? with appropriate boundary conditions for the Lagrange multipliers. 
The superfield @ satisfies the boundary condition ( 5 . 3 3 ~ )  we have imposed on all the 
formalism (see $ 2 )  and essentially this is only a boundary condition for the on-shell 
fields to ensure central charges vanish on-shell. 

We may include interaction of the hypermultiplet with the N = 2 SYM gauge 
multiplet by modifying the constraints (5.18) so as to be gauge invariant by replacing 
D by the gauge-covariant derivative 9, = D ,  -igA,, where A ,  is the SYM gauge 
potential. Thus (5.18) becomes (Sohnius 1978, Taylor 1980) 

(5.34a) Ba ( I Q ] ,  = Ga(l@J> = 

and the total Lagrangian for the system will be 

d4x dx5 dx6 d48 d4s[Tr(F,,)' + @TOl 3 .  (5.346) 

We may extend the above analysis both to other multiplets and to higher N .  Thus 
with constraints (Rands and for N = 4 the fundamental multiplet is the superfield 

Taylor 1983a, b) 

D m i i @ , k j E l  =Da(i@jk)p = o  (5.351 

(where raising and lowering of indices is performed by the USp(N) metric correspond- 
ing to a single central charge). Again we must take an irreducible representation, and 
in this case it is 

a,,@.,, = o ( n  = 6 ,7 ,8 ,9 ,  10) (5.36) 

corresponding to the USp(4) metric chosen in (5.35). The constrained Lagrangian 
may be taken as 

I d4x dx5 . . . dx'O d't? d'g (5.37) 

which gives the correct equations of motion on suitable variation as may be shown 
in a similar manner to the case for N = 2. For N = 8 the similar construction is in 
terms of the superfield with constraints 

D a ( i @ j k l m  = D d . ( i @ j k l m j  

with constraint 

(5.38) 

a, @jklm = 0 ( n  = 6 , .  . . , 18) (5.39) 

again singling out the single central charge assumed in (5.38), with associated USp(8) 
metric. The constrained Lagrangian will now be 

(5.40) 
J 

which may be justified as before. 
We have not considered the cases of more than one central charge in superfield 

form, though the component transformation rules and superfield constraints are known 
for this case (Bufton and Taylor 1983a). There are certain features about this case 
which require detailed analysis, which we leave to detailed consideration elsewhere. 
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However, we expect the same universal Lagrangian (5.37) or (5.40) for N = 4  or 8, 
with constraints modified from (5.35), (5.36) or (5.38), (5.39) according to the specific 
number of these charges. Indeed it can only be in the constraint sector that the 
modifications to the theory can be inserted which determine the particular SUSY 
representation. 

We may also wish to introduce interaction into 15.37) or (5.40). In  the former 
this could be self-coupling or compensation of the N = ~ S Y M .  The first of these 
possibilities appears difficult, as we noted in D 4. The second is, indeed, to be expected 
from the existence of the N = 3 barrier (Rivelles and Taylor 1981, Taylor 1982b, 
Rocek and Siegel 1981), and particular compensating multiplets considered at the 
linearised level (Taylor 1 9 8 2 ~ ) .  We expect that the total action will be of form (1.7) 
for N = 4, with suitable field strength constraints appropriate to allowing the correct 
equations of motion to be obtained. Similar remarks apply to (5.40), with N = 8 
supergravity described by the Lagrangian (1.6) for N = 8 and suitable torsion con- 
straints. We hope to report on these constraints elsewhere. 

6. Conclusions 

is to be interpreted We have shown that integration over central chargesx ', . . . , x 
as integration over the cone rh?: x '  axlo,, 5 c i 2(N + 1). (We have taken xicl) to be 
zero for each i ,  but this choice was for convenience). This interpretation was justified 
by showing that for each field theory of interest a constrained action, expressed as an 
integral over R4 x TCv or S4+4N x rN (where S ~ + J N  is the usual full superspace measure 
for N-SUSY without central charges) could be constructed so that the resulting 
equations of motion reduced to the expected four- (or 4 +4N)-dimensional ones for 
the boundary value fields at x i  = x:(),. The form of the action was shown to be 
completely determined by the requirement of obtaining the correct field equations 
from a given set of constraints. In the superfield case the action was, in fact, unique 
on purely dimensional grounds, and the details of the field equations arose purely 
from the nature of the constraints. 

Our interpretation of central charge dimensions seems very satisfactory from a 
physical point of view. There is no evidence available at present energies that 
space-time has more than four dimensions, and our construction of actions including 
central charge dimensions is such that this state of affairs is preserved. The interior 
of the cone rN of the central charge variables is never directly observable. 

The possibility of using a subspace of the @-variables is not available to us for 
N 2 3, since for such N there is no definition of chiral or similar subspaces without 
the associated disappearance of the central charges. Since the no-go theorems (Rivelles 
and Taylor 1981, Taylor 1982b, Rocek and Siegel 1981, Rivelles and Taylor 1983) 
show that some compensating multiplets with spin-reducing central charges are essen- 
tial for the construction of 4-SYM and N b 3 SGR, a full geometric approach will have 
to allow central charges to appear somewhere and prevent the use of chirality (even 
if reduction of the number of @-variables by a factor of two were considered possible, 
two central charge dimensions would still be needed for the definition of 4 - s ~ ~  and 
6 for 8 - s ~ ~ ) .  We thus have to use the central charge dimensions appropriate for 
description of the associated maximal use of integration over the &variables. 

The extra central charge dimensions only arise as useful additional parameters for 
describing off-shell features. In particular they are essential in allowing the use of 

2 ( N + l )  
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full integration over the Grassmann variables, 0, in superspace; without them the full 
&integration cannot be achieved. 

We have seen that &space is not required when central charge variables are 
present, A component approach using central charge variables is quite satisfactory, 
though we saw that the superfield formulation, especially for the actions (1.6) and 
(1.7), were most elegant and simple. It is only in the constraints needed to be imposed 
on field strengths or torsions that we see complexity entering, although we still have 
a fully geometrical approach to the theory with these further features. 

Our conclusion from our construction is that the use of rN as the integration region 
for central charges allows a full geometrical interpretation to be given to N - S Y M  and 
N-SGR beyond the N = 3 (Rivelles and Taylor 1981, Taylor 1982b) barrier. Similar 
cone interpretations should be valid for central charges needed to penetrate the N = 2 
barrier existing in higher-dimensional supersymmetric theories (Rivelles and Taylor 
1983). We are thus prepared to construct 4 - s ~ ~  and 8-SGR with maximal super- 
symmetry. 

It is appropriate to relate our work to the recent discussion of Rogers (19821, 
where a constrained action, involving integration over two central charge dimensions, 
was proposed for N = 2 SGR. This was claimed to give the correct dynamics by using 
the method of Wess and Zumino (1978), without need to restrict the central charge 
integration region in any way. If the constraints given in Rogers (1982) lead to the 
Dirac equation (1.4) then in order to obtain the field equations it is necessary to 
specify the boundary conditions at some lower-dimension surface in  order that the 
field equations (for the boundary values) may then be derived. The position of this 
surface is not of any relevance, as long as it is chosen to have the correct dimensions 
(less than the full Bose dimensions by the number of central charges). Thus the 
unconstrained action is to be regarded as an integral over some region in central 
charge directions, with the four-dimensional surface V(T) identified with R‘. We 
have chosen to be the cone ( x 5 ~ x ~ , x 6 ~ x o , .  . .), with V ( T ) =  ( x .  = x u , ,  , ,); the 
precise nature of r is clearly not important. On the other hand if the constraints do 
not lead to the Dirac equation (1.4) then they cannot help to broach the N = 3 barrier, 
and that approach will have to be modified along the lines we present here. 

Our construction has been purely at the classical level. We are naturally interested 
in the quantum features of our theories. We might suspect from our unconstrained 
Lagrangians that they are the full central charge superspace equivalents of actions 
written in first-order form 

6 5 5  

where in our case p is a set of Lagrange multipliers and q are superfields such as the 
hypermultiplet @[ in (5.18). Quantisation may be performed as usual by taking a ‘sum 
over paths’ formulation with density elA; this can be reduced to the usual functional 
integral over the fields q after integration over p has been performed. It is not 
necessary to perform such p-integration, and in our case we do not wish to. Thus our 
expected quantum features are to be derived from 

G ( J ,  K )  = I d[A I d[@] exp{i[A (Q, A ) + @J + AK]}  (6.2) 

where J and K are external sources coupled to the basic superfields Q and Lagrange 
multiplier fields A .  We may conjecture that the uniqueness of the actions (1.6) and 
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(1.7) can allow, at most, coupling constant renormalisation effects on-shell, since the 
only counter-terms not vanishing on shell and defined over the whole central-charge 
superspace are proportional to the original Lagrangians. The detailed mechanism of 
such quantisation has still to be developed. We propose to analyse this possibility 
and the more general nature of the resulting quantum mechanics elsewhere. 
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Appendix 

We are going to prove that the field equations determined by (5.20) are 

as@, = as@, = 0. 

a:@, = cl@, ; 

(AI) 
(5.18) implies 

(A2a 1 

= 0. (A261 
Let us define A,'(x5, x6), A?(x5, x6) the two independent modes which solve (A2). 
It is straightforward to prove that these modes satisfy 

we also have 

D:,,A:, + o,(,A;, = 0 ,  D:,,A;, t BailOA;, = 0 (A3a, 6 )  
and the corresponding constraints for the other chirality. We can express (5.20) in 
the following way 

I = d4x d40 d4# d x 5  dx6(Ai' +ZA?)+(Ai' +ZA?)+ ('44) J 
A:, A f  satisfying (A2) and (A3). (A2) and (A3) are equivalent to (5.18). For fixed 
x5, x6 let us integrate in e, #using (5.3). We get 

satisfy constraints (A2). We show elsewhere (Hassoun el a1 1983) that I is the action 
we have already studied in the component approach. Therefore the stationary points 
of (A5) and thus of (5.20) satisfy (Al) .  
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